Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5373, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438425

RESUMO

Sugarcane is the main sugar crop, and sugar is an important agricultural product in Egypt. There are many problems with the technology used in the current planting method of sugarcane, which has a great impact on the planting quality of sugarcane, which have a series of problems, such as low cutting efficiency and poor quality. Therefore, the aim of the current study was to design, construct, and field testing of a semiautomatic sugarcane bud chipper assisted with pivot knives for cutting sugarcane buds and germinating them in plastic trays inside a greenhouse until they reached an average length of 35 cm, and then planting them in the field. In the field tests five cutting speeds (35, 40, 45, 50, and 56 rpm. (Revolution Per minute), three cutting knives (1.5, 2.0, and 2.5 mm) were used for cutting sugarcane stalks with four different diameters (1.32, 1.82, 2.43, and 2.68 cm). The obtained results showed that the values of the damage index and invisible losses were within acceptable limits (ranging between - 1.0 and 0.0) for all the variables under the test. Still, the lowest damage index and invisible losses were recorded with the buds that were cut with a knife of 1.5 mm thickness and cutting speeds less than 50 rpm. The skipping rate increases with the increase in cutting speed and stalk diameter, ranging between 0.0 to 13%. The maximum machine productivity was 110 Buds per minute at a cutting speed of 35 rpm and stalk diameter of 1.32 cm. The paper's findings have important application values for promoting the designing and development of sugarcane bud chipper and sugarcane planting technology in the future.


Assuntos
Saccharum , Agricultura , Egito , Registros , Açúcares
2.
Plants (Basel) ; 13(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38202443

RESUMO

Deep learning plays a vital role in precise grapevine disease detection, yet practical applications for farmer assistance are scarce despite promising results. The objective of this research is to develop an intelligent approach, supported by user-friendly, open-source software named AI GrapeCare (Version 1, created by Osama Elsherbiny). This approach utilizes RGB imagery and hybrid deep networks for the detection and prevention of grapevine diseases. Exploring the optimal deep learning architecture involved combining convolutional neural networks (CNNs), long short-term memory (LSTM), deep neural networks (DNNs), and transfer learning networks (including VGG16, VGG19, ResNet50, and ResNet101V2). A gray level co-occurrence matrix (GLCM) was employed to measure the textural characteristics. The plant disease detection platform (PDD) created a dataset of real-life grape leaf images from vineyards to improve plant disease identification. A data augmentation technique was applied to address the issue of limited images. Subsequently, the augmented dataset was used to train the models and enhance their capability to accurately identify and classify plant diseases in real-world scenarios. The analyzed outcomes indicated that the combined CNNRGB-LSTMGLCM deep network, based on the VGG16 pretrained network and data augmentation, outperformed the separate deep network and nonaugmented version features. Its validation accuracy, classification precision, recall, and F-measure are all 96.6%, with a 93.4% intersection over union and a loss of 0.123. Furthermore, the software developed through the proposed approach holds great promise as a rapid tool for diagnosing grapevine diseases in less than one minute. The framework of the study shows potential for future expansion to include various types of trees. This capability can assist farmers in early detection of tree diseases, enabling them to implement preventive measures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...